翻訳と辞書
Words near each other
・ Ribbon (disambiguation)
・ Ribbon (mathematics)
・ Ribbon (rhythmic gymnastics)
・ Ribbon cable
・ Ribbon candy
・ Ribbon Cascade (Teton County, Wyoming)
・ Ribbon category
・ Ribbon Creek incident
・ Ribbon development
・ Ribbon diagram
・ Ribbon eel
・ Ribbon Fall
・ Ribbon farm
・ Ribbon Hero
・ Ribbon Hero 2
Ribbon Hopf algebra
・ Ribbon in the Sky
・ Ribbon knot
・ Ribbon lake
・ Ribbon microphone
・ Ribbon of Darkness
・ Ribbon of Leningrad Victory
・ Ribbon of Saint George
・ Ribbon Ridge Airport
・ Ribbon Ridge AVA
・ Ribbon sawtail fish
・ Ribbon seal
・ Ribbon snake
・ Ribbon synapse
・ Ribbon theory


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ribbon Hopf algebra : ウィキペディア英語版
Ribbon Hopf algebra
A ribbon Hopf algebra (A,m,\Delta,u,\varepsilon,S,\mathcal,\nu) is a quasitriangular Hopf algebra which possess an invertible central element \nu more commonly known as the ribbon element, such that the following conditions hold:
:\nu^=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1
:\Delta (\nu)=(\mathcal_\mathcal_)^(\nu \otimes \nu )
where u=m(S\otimes \text)(\mathcal_). Note that the element ''u'' exists for any quasitriangular Hopf algebra, and
uS(u) must always be central and satisfies S(uS(u))=uS(u), \varepsilon(uS(u))=1, \Delta(uS(u)) =
(\mathcal_\mathcal_)^(uS(u) \otimes uS(u)), so that all that is required is that it have a central square root with the above properties.
Here
: A is a vector space
: m is the multiplication map m:A \otimes A \rightarrow A
: \Delta is the co-product map \Delta: A \rightarrow A \otimes A
: u is the unit operator u:\mathbb \rightarrow A
: \varepsilon is the co-unit operator \varepsilon: A \rightarrow \mathbb
: S is the antipode S: A\rightarrow A
:\mathcal is a universal R matrix
We assume that the underlying field K is \mathbb
== See also ==

*Quasitriangular Hopf algebra
*Quasi-triangular quasi-Hopf algebra

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ribbon Hopf algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.